|本期目录/Table of Contents|

[1]张天巍,刘祥臣,王国峰,等.干水在热环境中的持续作用效果研究*[J].中国安全生产科学技术,2021,17(11):172-178.[doi:10.11731/j.issn.1673-193x.2021.11.026]
 ZHANG Tianwei,LIU Xiangchen,WANG Guofeng,et al.Study on sustained action effect of dry water in thermal environment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(11):172-178.[doi:10.11731/j.issn.1673-193x.2021.11.026]
点击复制

干水在热环境中的持续作用效果研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
17
期数:
2021年11期
页码:
172-178
栏目:
职业安全卫生管理与技术
出版日期:
2021-11-30

文章信息/Info

Title:
Study on sustained action effect of dry water in thermal environment
文章编号:
1673-193X(2021)-11-0172-07
作者:
张天巍刘祥臣王国峰张存位刘皓梁强
(1.中国人民警察大学 救援指挥学院,河北 廊坊 065000;
2.威海金泓集团有限公司,山东 威海 264200;
3.哈尔滨工业大学 材料科学与工程学院,黑龙江 哈尔滨 150001;
4.中国人民警察大学 消防与应急救援国家工程实验室,河北 廊坊 065000)
Author(s):
ZHANG Tianwei LIU Xiangchen WANG Guofeng ZHANG Cunwei LIU Hao LIANG Qiang
(1.College of Rescue and Command,China People’s Police University,Langfang Hebei 065000,China;
2.Weihai Jinhong Group Co.,Ltd.,Weihai Shandong 264200,China;
3.College of Materials Science and Engineering,Harbin Institute of Technology,Harbin Heilongjiang 150001,China;
4.National Engineering Laboratory for Fire and Emergency Rescue,China People’s Police University,Langfang Hebei 065000,China)
关键词:
热辐射干水火焰传播量热仪持续作用热和烟气危害
Keywords:
thermal radiation dry water fire propagation apparatus (FPA) sustained action heat and smoke hazards
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2021.11.026
文献标志码:
A
摘要:
为研究干水对建筑火灾中高聚物燃烧产生的热危害和烟气危害的影响,采用火焰传播量热仪(FPA)模拟建筑火灾扑灭后的持续热环境,对灭火过程中过量施加的干水对可燃高聚物的持续作用效果进行研究。结果表明:干水能够明显提升可燃物的抗复燃性能以及削弱燃烧过程中的热危害和烟气危害;相比于纯燃料,干水作用下可燃物的点燃时间出现明显的延迟,并且热释放速率和一氧化碳生成速率明显降低,尤其在可燃物燃烧初期,干水还具有显著的抑制烟气生成速率的效果。研究结果可为灾后消防人员的搜救和被困人员的逃生提供一种新的技术方案。
Abstract:
In order to study the influence of dry water on the heat and smoke hazards generated by the combustion of polymers in the building fires,the fire propagation apparatus (FPA) was used to simulate the sustained thermal environment after fire extinguishing,and the sustained action effect of excessively applied dry water on the combustible polymer during the fire extinguishing process was studied.The results showed that the dry water could significantly improve the re-ignition resistance performance of combustibles and weaken the heat and smoke hazards during the combustion process.Compared with the pure fuel,the ignition time of combustibles under the action of dry water was significantly delayed,and the heat release rate and the generation rate of carbon monoxide reduced significantly.Especially in the early stage of combustible combustion,the dry water also had a significant effect on suppressing the rate of smoke generation.The research results can provide a new technical solution for the search and rescue of firefighters and the escape of trapped persons after the disaster.

参考文献/References:

[1]XIE Q Y,LUO S F,DA L J.Effects of backwall on inner thermal structure in opposed-flow horizontal flame spread of thick PMMA panel[J].Applied Thermal Engineering,2020,185:116424.
[2]GRANT G,BRENTON J,DRYSDALE D.Fire suppression by water sprays[J].Progress in Energy & Combustion Science,2000,26(2):79-130.
[3]KUANG K Q,CHOW W K,NI X M,et al.Fire suppressing performance of superfine potassium bicarbonate powder[J].Fire and Materials,2011,35(6):353-366.
[4]ZHANG T W,LIU H,HAN Z Y,et al.Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics[J].Applied Thermal Engineering,2017,122:429-438.
[5]ZHANG L,LI Y Q,DUAN Q L,et al.Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires[J].Journal of Energy Storage,2020,32:101801.
[6]ZHAO J C,LU S,FU Y Y,et al.Application of ultra-fine dry chemicals modified by POTS/OBS for suppressing aviation kerosene pool fire[J].Fire Safety Journal,2020,118:103148.
[7]HAMINS A.Flame extinction by sodium bicarbonate powder in a cup burner[J].Symposium on Combustion,1998,27(2):2857-2864.
[8]XU J J,GU P Y,DUAN Q L,et al.Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires[J].Applied Thermal Engineering,2020,171:115076.
[9]AUSSILLOUS P,QUERE D.Liquid marbles[J].Nature,2001,411(6840):924-927.
[10]BINKS B P,MURAKAMI R.Phase inversion of particle-stabilized materials from foams to dry water[J].Nature Materials,2006,5(11):865-869.
[11]刘皓,张天巍,夏登友,等.凝胶型核壳结构粉体抑制A类火的有效性研究[J].化工学报,2019,70(4):1652-1660. LIU Hao,ZHANG Tianwei,XIA Dengyou,et al.Study on extinguishing efficiency in suppressing class A fire by gel-type core-shell particles[J].CIESC Journal,2019,70(4):1652-1660.
[12]HAN Z Y,GONG L,DU Z M,et al.A novel environmental-friendly gel dry-water extinguishant containing additives with efficient combustion suppression efficiency[J].Fire Technology,2020,56(6):2365-2385.
[13]ZOU Y Y,LI K Y,YUAN B H,et al.Inspiration from a thermosensitive biomass gel:A novel method to improving the stability of core-shell “dry water” fire extinguishing agent[J].Powder Technology,2019,356:383-390.
[14]张祖忞,陈先锋,袁必和.普通“干水”及凝胶型“干水”粉体性能研究[J].功能材料,2018,49(6):6107-6112. ZHANG Zumin,CHEN Xianfeng,YUAN Bihe.Property investigation of “dry water” and gelling “dry water” powder[J].Functional Materials,2018,49(6):6107-6112.
[15]EI HOUSSAMI M,THOMAS J C,LAMORLETTE A,et al.Experimental and numerical studies characterizing the burning dynamics of wildland fuels[J].Combustion and Flame,2016,168:113-126.
[16]ZHANG T W,LIU X C,WANG G F,et al.Core-shell microstructured nanocomposites optimized based on Box-Behnken design for enhanced suppression of hydrogen co-flow flames[J].International Journal of Hydrogen Energy,2021,46(21):12035-12061.
[17]ASTM E.2058-00:standard test method for measurement of synthetic polymer material flammability using a fire propagation apparatus(FPA).Am Soc Test Mater 2000:100.
[18]FERRIOL M,GENTILHOMME A,COCHEZ M,et al.Thermal degradation of poly (methyl methacrylate)(PMMA):modelling of DTG and TG curves[J].Polymer degradation and stability,2003,79(2):271-281.
[19]OLAYIWOLA S O,DEJAM M.A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs[J].Fuel,2019,241:1045-1057.
[20]JIANG H P,BI M S,LI B,et al.Flame inhibition of aluminum dust explosion by NaHCO3 and NH4H2PO4[J].Combustion and Flame,2019,200:97-114.
[21]TAYLAN O,BERBEROGLU H.Thermal radiation transport in a fluidized dry water system[J].Journal of Quantitative Spectroscopy and Radiative Transfer,2013,120:104-113.
[22]YAN Y,HAN Z Y,DU Z M,et al.New type pyrotechnically generated aerosol extinguishing agents containing phosphorus[J].Journal of Cleaner Production,2017,154:151-158.
[23]JIANG H P,BI M S,LI B,et al.Inhibition evaluation of ABC powder in aluminum dust explosion[J].Journal of hazardous materials,2019,361:273-282.
[24]TEWARSON A.Flammability Parameters of Materials:Ignition,Combustion,and Fire Propagation[J].Journal of Fire Sciences,1994.
[25]YAN Z H,HOLMSTEDT G.CFD and experimental studies of room fire growth on wall lining materials[J].Fire Safety Journal,1996,27(3):201-238.

相似文献/References:

[1]姜虹,李丽霞,沙锡东.甲苯池火辐射数值模拟[J].中国安全生产科学技术,2011,7(4):34.
 JIANG Hong,LI Li-xia,SHA Xi-dong.Numerical simulation of heat radiation by toluene pool fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(11):34.
[2]曹彬,张礼敬,张村峰,等.比较FDS和FLUENT在池火灾模拟中的应用[J].中国安全生产科学技术,2011,7(9):45.
 CAO Bin,ZHANG Li-jing,ZHANG Cun-feng,et al.Comparison of FDS and FLUENT applied in the pool fire simulation[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(11):45.
[3]程万洲,张海珊,吴超鹏,等.树冠火对输油站热辐射影响的数值模拟研究[J].中国安全生产科学技术,2012,8(10):54.
 CHENG Wan zhou,ZHANG Hai shan,WU Chao peng,et al.Modeling and numerical study on thermal radiation to oil transport station by crown fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2012,8(11):54.
[4]杨素芳.石油化工装置区火灾举高消防车的安全部署研究[J].中国安全生产科学技术,2015,11(10):168.[doi:10.11731/j.issn.1673-193x.2015.10.028]
 YANG Su-fang.Study on safety deployment of elevating apparatus in the petrochemical units fire[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(11):168.[doi:10.11731/j.issn.1673-193x.2015.10.028]
[5]董炳燕,黄有波,孟江,等.障碍物对天然气喷射火影响的数值模拟研究[J].中国安全生产科学技术,2016,12(1):111.[doi:10.11731/j.issn.1673-193x.2016.01.021]
 DONG Bingyan,HUANG Youbo,MENG Jiang,et al.Numerical simulation on influence of obstacle on jet fire of natural gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(11):111.[doi:10.11731/j.issn.1673-193x.2016.01.021]
[6]张培红,张 怡,张云栗.不同通风条件下柴油池火的实验研究[J].中国安全生产科学技术,2017,13(6):145.[doi:10.11731/j.issn.1673-193x.2017.06.024]
 ZHANG Peihong,ZHANG Yi,ZHANG Yunli.Experimental study on diesel pool fire under different ventilation conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(11):145.[doi:10.11731/j.issn.1673-193x.2017.06.024]
[7]蒋代,华敏,潘旭海.危化品储罐区多灾种耦合效应风险分析[J].中国安全生产科学技术,2018,14(9):144.[doi:10.11731/j.issn.1673-193x.2018.09.023]
 JIANG Dai,HUA Min,PAN Xuhai.Risk analysis on multidisaster coupling effect in storage tank area of dangerous chemicals[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(11):144.[doi:10.11731/j.issn.1673-193x.2018.09.023]
[8]杨志华,宋佩月,付建民,等.大型原油储罐泄漏隔堤池火灾后果研究[J].中国安全生产科学技术,2021,17(12):49.[doi:10.11731/j.issn.1673-193x.2021.12.008]
 YANG Zhihua,SONG Peiyue,FU Jianmin,et al.Analysis on consequence of pool fire in intermediate dike caused by leakage of large crude oil tank[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2021,17(11):49.[doi:10.11731/j.issn.1673-193x.2021.12.008]

备注/Memo

备注/Memo:
收稿日期: 2021-06-03
* 基金项目: 国家自然科学基金项目(51804314);河北省自然科学基金项目(E2019507007);河北省重点研发计划项目(20375503D);中国人民警察大学科研重点攻关项目(2019zdgg006)
作者简介: 张天巍,博士,讲师,主要研究方向为灭火材料研发及应用。
更新日期/Last Update: 2021-12-08