|本期目录/Table of Contents|

[1]杨逾,孙艺丹,张国赟.动载下巷道围岩微震响应特征及支护研究[J].中国安全生产科学技术,2020,16(6):73-79.[doi:10.11731/j.issn.1673-193x.2020.06.012]
 YANG Yu,SUN Yidan,ZHANG Guoyun.Study on microseismic response characteristics and support technology of roadway surrounding rock under dynamic load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(6):73-79.[doi:10.11731/j.issn.1673-193x.2020.06.012]
点击复制

动载下巷道围岩微震响应特征及支护研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
16
期数:
2020年6期
页码:
73-79
栏目:
职业安全卫生管理与技术
出版日期:
2020-06-30

文章信息/Info

Title:
Study on microseismic response characteristics and support technology of roadway surrounding rock under dynamic load
文章编号:
1673-193X(2020)-06-0073-07
作者:
杨逾孙艺丹张国赟
(辽宁工程技术大学 土木工程学院,辽宁 阜新 123000)
Author(s):
YANG Yu SUN Yidan ZHANG Guoyun
(School of Civil Engineering,Liaoning Technical University,Fuxin Liaoning 123000,China)
关键词:
动载微震监测围岩变形数值分析支护优化
Keywords:
dynamic load microseismic monitoring surrounding rock deformation numerical analysis support optimization
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2020.06.012
文献标志码:
A
摘要:
为探讨动载下深部巷道围岩变形特征,采用微震监测系统、顶板动态监测仪及FLAC3D 数值模拟软件研究深部工作面回采中微震活动特征及巷道变形破坏特征,模拟动载前后巷道围岩及支护体力学响应特性。研究结果表明:微震事件分布与累计损失能量均呈现出明显的3阶段特征,与工作面开采过程出现的初次来压、采空区初次见方和遇见断层现象相对应;微震事件的分布在时间和空间上具有一致性;动载下顶板破坏程度大于底板及两帮;动载扩大了巷道围岩塑性区范围,改变了围岩的受力状态,增大了围岩的变形量与支护体的受力;通过增加锚杆直径、长度、排距及提高预紧力对支护结构进行优化,现场监测数据表明,优化后支护方案保证了围岩的完整性,限制了围岩的变形,减小了锚杆受力,能够有效控制采动影响下巷道围岩的变形,对采动影响下深部巷道维护保证煤矿安全生产具有参考应用价值。
Abstract:
In order to discuss the deformation characteristics of surrounding rock in the deep roadway under dynamic load,the microseismic monitoring system,the roof dynamic monitoring instrument and the FLAC3D numerical simulation software were used to study the microseismic activity characteristics and the deformation and failure characteristics of roadway in the deep mining face,and the mechanical response characteristics of the surrounding rock and support body before and after the dynamic load were simulated.The results showed that both the distribution of microseismic events and the cumulative energy loss presented the obvious threestage characteristics,which were corresponding to the phenomena of the first weighting,the first square and fault encountered in the goaf during the mining process of working face.The distribution of microseismic events was consistent in time and space.The damage degree of roof under the dynamic load was greater than those of floor and both sides.The dynamic load enlarged the range of plastic zone in the surrounding rock of roadway,changed the stress state of surrounding rock,and increased the deformation amount of surrounding rock and the stress of support body.The support structure was optimized by increasing the diameter,length and row spacing of bolt and increasing the pretightening force,and the field monitoring data showed that the optimized supporting scheme ensured the integrity of surrounding rock,restricted the deformation of surrounding rock,and reduced the stress on the bolt.It can effectively control the deformation of surrounding rock of the roadway under the influence of dynamic disturbance,which has reference and application values for the maintenance of deep roadway under the influence of dynamic disturbance and ensuring the work safety of coal mines.

参考文献/References:

[1]何满潮,谢和平,苏萍.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813. HE Manchao,XIE Heping,SU Ping.Study on mechanicsin deep mining engineering[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
[2]朱万成,左宇军,尚世明,等.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007(5):915-921. ZHU Wancheng,ZUO Yujun,SHANG Shiming,et al.Numericalsimulationofinstablefailureofdeeprocktunneltriggeredbydynamicdisturbance[J].Chinese Journal of Rock Mechanics and Engineering,2007(5):915-921.
[3]李夕兵,廖九波,赵国彦,等.动力扰动下高应力巷道围岩动态响应规律[J].科技导报,2012,30(22):48-54. LI Xibing,LIAO Jiubo,ZHAO Guoyan,et al.Dynamic response of surrounding rock in highly-stressed tunnelunder dynamic disturbance[J].Science & Technology Review,2012,30(22):48-54.
[4]王如坤,梅甫定.高应力矿柱在动力扰动下力学响应研究[J].地下空间与工程学报,2016,12(2):349-355,419. WANG Rukun,MEI Fuding.Study on mechanical response of highly-stressed pillars under dynamic disturbance[J].Chinese Journal of Underground Space and Engineering,2016,12(2):349-355,419.
[5]于洋.特厚煤层坚硬顶板破断动载特征及巷道围岩控制研究[D].徐州:中国矿业大学,2015.
[6]神文龙.硬顶活化型动载的波扰机理与邻空巷道控制研究[D].徐州:中国矿业大学,2017.
[7]李春元,张勇,张国军,等.深部开采动力扰动下底板应力演化及裂隙扩展机制[J].岩土工程学报,2018,40(11):2031-2040. LI Chunyuan,ZHANG Yong,ZHANG Guojun,et al.Crack propagation mechanisms and stress evolution of floor under dynamic disturbance in deep coal mining[J].Chinese Journal of Geotechnical Engineering,2018,40(11):2031-2040.
[8]李术才,王雷,江贝,等.动压影响煤柱下方巷道微震特征及破坏机制[J].中国矿业大学学报,2019,48(2):247-257. LI Shucai,WANG Lei,JIANG Bei,et al.Microseismic characteristic and failure mechanism of roadway below coal pillar under dynamic pressure [J].Journal of China University of Mining & Technology,2019,48(2):247-257.
[9]夏永学,蓝航,毛德兵,等.基于微震监测的超前支承压力分布特征研究[J].中国矿业大学学报,2011,40(6):868-873. XIA Yongxue,LAN Hang,MAO Debing,et al.Study of the lead abutment pressure distribution base on microseismic monitoring [J].Journal of China University of Mining & Technology,2011,40(6):868-873.
[10]ITASC A.Fastlagrangian analysis of continua its application in 3 dimension [M].USA:Version 31,User’s Guide.Minneapolis,2007.
[11]吕进国,王涛,丁维波,等.深部开采逆断层对冲击地压的诱导机制[J].煤炭学报,2018,43(2):405-416. LYU Jinguo,WANG Tao,DING Weibo,et al.Induction mechanisms of coal bumps caused by thrust faults during deep mining [J].Journal of China Coal Society,2018,43(2):405-416.
[12]侯朝炯,郭励生,勾攀峰,等.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
[13]张宏伟,刘长江,李云鹏,等.特厚煤层综放工作面回采巷道支护技术研究[J].煤炭科学技术,2020,48(4):185-193. ZHANG Hongwei,LIU Changjiang,LI Yunpeng,et al.Study on support technology of mining roadway in fully-mechanized caving face in ultra thick coal seams[J].Coal Science and Technology,2020,48(4):185-193.

相似文献/References:

[1]张飞,刘德峰,张衡,等.基于IMS微震监测系统的微震事件定位精度分析[J].中国安全生产科学技术,2013,9(6):21.[doi:10.11731/j.issn.1673-193x.2013.06.004]
 ZHANG Fei,LIU De feng,ZHANG Heng,et al.Location accuracy analysis of the seismic events based on the IMS microseismic monitoring system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(6):21.[doi:10.11731/j.issn.1673-193x.2013.06.004]
[2]张宏伟,朱峰,盛继权,等.多手段综合分析特厚煤层分层开采覆岩破坏高度[J].中国安全生产科学技术,2016,12(1):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
 ZHANG Hongwei,ZHU Feng,SHENG Jiquan,et al.Multiple means comprehensive analysis on failure height of overburden strata in slicing mining of ultra thick coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
[3]张宏伟,朱峰,盛继权,等.多手段综合分析特厚煤层分层开采覆岩破坏高度[J].中国安全生产科学技术,2016,12(1):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
 ZHANG Hongwei,ZHU Feng,SHENG Jiquan,et al.Multiple means comprehensive analysis on failure height of overburden strata in slicing mining of ultra thick coal seam[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):11.[doi:10.11731/j.issn.1673-193x.2016.01.002]
[4]张楚旋,李夕兵,董陇军,等.基于微震监测的岩体失稳智能预报[J].中国安全生产科学技术,2016,12(3):5.[doi:10.11731/j.issn.1673-193x.2016.03.001]
 ZHANG Chuxuan,LI Xibing,DONG Longjun,et al.Intelligent prediction of rock mass instability based on microseismic monitoring[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):5.[doi:10.11731/j.issn.1673-193x.2016.03.001]

备注/Memo

备注/Memo:
收稿日期: 2020-03-17
* 基金项目: 国家重点研发计划项目(2018YFC0604705);国家自然科学基金项目(51774167);辽宁省“兴辽英才计划”科技创新领军人才项目(XLYC1802063)
作者简介: 杨逾,博士,教授,主要研究方向为采动煤岩体稳定性。
更新日期/Last Update: 2020-07-07