|本期目录/Table of Contents|

[1]汲银凤,陈举师,张波,等.气水喷嘴雾化特性实验研究[J].中国安全生产科学技术,2017,13(12):27-32.[doi:10.11731/j.issn.1673-193x.2017.12.004]
 JI Yinfeng,CHEN Jushi,ZHANG Bo,et al.Experimental research on atomization characteristics of air-water nozzle[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(12):27-32.[doi:10.11731/j.issn.1673-193x.2017.12.004]
点击复制

气水喷嘴雾化特性实验研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年12期
页码:
27-32
栏目:
学术论著
出版日期:
2017-12-31

文章信息/Info

Title:
Experimental research on atomization characteristics of air-water nozzle
文章编号:
1673-193X(2017)-12-0027-06
作者:
汲银凤陈举师张波高康宁
(北京科技大学 教育部金属矿山高效开采与安全重点实验室,北京 100083)
Author(s):
JI Yinfeng CHEN Jushi ZHANG Bo GAO Kangning
(Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China)
关键词:
气水喷嘴雾滴粒径最佳工况雾化效果
Keywords:
air-water nozzle droplet size optimum conditions atomization effect
分类号:
TD741.2
DOI:
10.11731/j.issn.1673-193x.2017.12.004
文献标志码:
A
摘要:
为研究不同类型气水喷嘴的雾化效果及气体流量和水流量对雾化效果的影响,基于实验室自行设计的气水喷雾实验系统,利用JL-3000型激光粒度分析仪及电磁流量计和转子流量计对气水喷嘴流量特性及最佳工况条件进行了实验研究。采用origin软件对数据进行分析得到雾化粒径及雾滴相对尺寸ΔS随气体流量及水流量的变化曲线,并以此衡量喷嘴的雾化效果。利用喷雾学、流体力学及多相流等理论对实验现象进行分析并得到喷嘴的最佳工况条件。实验结果表明:当水流量一定时,随着气体流量的增加,雾滴粒径减小速度由快变慢。当气体流量为80 L/min时,水流量为5 L/h即气液比为960时干雾喷嘴雾化效果最好,扇形喷嘴和锥形喷嘴气水流量分别为100 L/min,5 L/h和140 L/min,5 L/h,即气液比分别为1 200和1 680时其雾化效果最好。通过对比最佳雾化效果发现干雾喷嘴的雾滴粒径及雾滴相对尺寸最小,可以达到更好的雾化效果和经济效益。
Abstract:
In order to study the atomization effect of air-water nozzles with different types and the influence of gas flow and water flow on the atomization effect, the experimental research on the flow characteristics of air-water nozzles and the optimum conditions was carried out by using the JL-3 000 laser particle size analyzer, electromagnetic flow meter and rotor flow meter based on the self-developed air-water atomization experimental system. The data was analyzed by using the Origin software, and the variation curves of atomization droplet size and relative size ΔS with the gas flow and water flow were obtained to measure the atomization effect of nozzles. The experimental phenomena were analyzed by using the theories of atomization, fluid dynamics and multiphase flow, then the optimum conditions of nozzles were obtained. The experimental results showed that when the water flow was constant, the reducing speed of droplet size changed from fast to slow with the increase of gas flow. When the gas flow was 80 L/min and the water flow was 5L/h, namely the air-water ratio was 960, the atomization effect of dry spray nozzle was the best, while the conditions of best atomization effect for fan-type nozzle and conical-type noz-zle were respectively 100 L/min, 5 L/h and 140 L/min, 5 L/h, namely the air-water ratio was 1 200 and 1 680 respec-tively. Through comparing the best atomization effect, it showed that the droplet size and relative size of dry spray nozzle were the minimum, which can achieve the best atomization effect and economic benefit.

参考文献/References:

[1]时训先, 蒋仲安, 褚燕燕. 煤矿综采工作面防尘技术研究现状及趋势[J]. 中国安全生产科学技术, 2005, 1(1):41-43. SHI Xunxian, JIANG Zhongan, CHU Yanyan. Current development and trend of dust control technology research of fully mechanized coalfaces[J]. Journal of Safety Science and Technology, 2005, 1(1):41-43.
[2]王鹏飞, 刘荣华, 胡海桥, 等. 煤矿井下气水喷雾雾化特性实验研究[J]. 煤炭学报, 2017, 42(5): 1213-1220. WANG Pengfei, LIU Ronghua, WANG Haiqiao, et al. Atomization characteristics of air-water spray in underground coal mine[J]. Journal of China Coal Society, 2017, 42(5):1213-1220.
[3]张小涛,隋金君,曲宝, 等. 采掘工作面喷雾降尘技术研究及应用[J]. 煤矿机械, 2013, 34(8):247-250. ZHANG Xiaotao, SUI Jinjun, Qu Bao, et al. Research and application of spray dust suppression technology in coal face and heading face[J]. Coal Mine Machinery, 2013, 34(8):247-250.
[4]丁厚成, 杨帆, 张义坤. 综掘工作面粉尘运移规律及控制技术研究[J]. 安全与环境工程, 2015, 22(4): 82-87. DING Houcheng, YANG Fan, ZHANG Yikun. Research on dust law migration law and control technology in full-mechanized working face[J]. Journal of Safety and Environmental Engineering, 2015, 22(4):82-87.
[5]陈斌, 郭列锦, 张西民, 等. 喷嘴雾化特性实验研究[J]. 工程热物理学报, 2001, 22(2):237-240. CHEN Bin, GUO Liejin, ZHANG Ximin, et al. Experimental research of the atomization characteristics of a nozzle[J]. Journal of Engineering Thermophysics, 2002, 22(2):237-240.
[6]王鹏飞, 刘荣华, 桂哲, 等. 煤矿井下气水喷雾雾化特性及降尘效率理论研究[J]. 煤炭学报, 2016, 41(9):2256-2262. WANG Pengfei, LIU Ronghua, GUI Zhe, et al. Theoretical research on atomization characteristics and dust suppression efficiency of air-water spray in underground coal mine[J]. Journal of China Coal Society, 2016, 41(9):2256-2262.
[7]蒋仲安, 王明, 陈举师, 等. 气水喷嘴雾化特征与降尘效果分析[J]. 哈尔滨工业大学学报, 2017, 49(2):151-157. JIANG Zhongan, WANG Ming, CHEN Jushi, et al. Atomization characteristics and suppress mechanism of a gas-water nozzle[J]. Journal of Harbin Institute of technology, 2017, 49(2):151-157.
[8]Barroso J, Lozano A, Barreras F, et al. Analysis and prediction of the spray produced by an internal mixing chamber twin-fluid nozzle[J]. Fuel Processing Technology, 2014, 128:1-9.
[9]武沛武. 综掘面新型气水雾化降尘技术实践[J]. 中州煤炭, 2015, (4): 14-16,29. WU Peiwu. Practice on new gas water atomization and dust control technology in full-mechanized driving face[J]. China Energy and Environmental Protection, 2015, (4):14-16,29.
[10]桂哲, 刘荣华, 王鹏飞, 等. 供水压强对气水喷雾雾化粒度的影响[J]. 矿业工程研究, 2016, 31(3):21-25. GUI Zhe, LIU Ronghua, WANG Pengfei, et al. Influence of water supply pressure over atomization article size by air-water spray[J]. Mineral Engineering Research, 2016, 31(3):21-25.
[11]梅国晖, 武荣阳, 孟红记, 等. 气水雾化喷嘴最佳气水比的确定[J]. 钢铁钒钛, 2004, 25(2):49-51,70. MEI Guohui,WU Rongyang, MENG Hongji, et al. Optimal air to water ratio in misting cooling process[J]. Iron Steel Vanadium Titanium, 2004, 25(2):49-51,70.
[12]王延军, 张天林. 气-水喷雾加湿降尘技术在涂装车间的应用[J]. 涂料工业, 2013, 43(3):70-72. WANG Yanjun, ZHANG Tianlin. Application of air-water spray humidification dust elimination technology in painting shop[J]. Paint & Coatings Industry, 2013, 43(3):70-72.
[13]李萍, 张薇. 内混式气液雾化喷嘴雾滴粒径的实验研究[J]. 小型内燃机与车辆技术, 2006, 35(4):21-24. LI Ping, ZHANG Wei. Particle diameter investigation on internal mixing air-liquid atomizer[J]. Small Internal Combustion Engine and Vehicle Technique, 2006, 35(4):21-24.
[14]曹建明, 朱辉, 郭广祥, 等. 空气助力改善液滴雾化质量的研究[J]. 实验流体力学, 2013, 27(1):56-60,87. CAO Jianming, ZHU Hui, GUO Guangxiang, et al. Study on air assistant to improve quality of droplet atomization[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1):56-60,87.
[15]刘联胜, 吴晋湘, 傅茂林, 等. 气泡雾化喷嘴雾化特性实验[J]. 燃烧科学与技术, 2001, 7(1):62-66. LIU Liansheng, WU Jinxiang, FU Maolin, et al. Experimental studies on the spray characteristics of effervescent atomizers[J]. Journal of Combustion Science and Technology, 2001, 7(1):62-66.
[16]周刚, 程卫民, 聂文, 等. 高压喷雾射流雾化及水雾捕尘机理的拓展理论分析[J]. 重庆大学学报, 2012, 35(3):121-126. ZHOU Gang, CHENG Weimin, NIE Wen, et al. Extended theoretical analysis of jet and atomization under high-pressure spraying and collecting dust mechanism of droplet[J]. Journal of Chongqing University, 2012, 35(3):121-126.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51604018),北京市自然科学基金项目(8164060)
更新日期/Last Update: 2018-01-29