|本期目录/Table of Contents|

[1]李蒙,杜扬,李国庆,等.油气浓度对半开口管道爆炸超压特性与火焰行为的影响[J].中国安全生产科学技术,2017,13(10):174-180.[doi:10.11731/j.issn.1673-193x.2017.10.029]
 LI Meng,DU Yang,LI Guoqing,et al.Effects of gasoline-air concentration on explosion overpressure characteristics and flame behavior of semi-open pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):174-180.[doi:10.11731/j.issn.1673-193x.2017.10.029]
点击复制

油气浓度对半开口管道爆炸超压特性与火焰行为的影响
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年10期
页码:
174-180
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-10-30

文章信息/Info

Title:
Effects of gasoline-air concentration on explosion overpressure characteristics and flame behavior of semi-open pipeline
文章编号:
1673-193X(2017)-10-0174-07
作者:
李蒙杜扬李国庆齐圣王世茂韦世豪
(中国人民解放军陆军勤务学院 供油系,重庆 401331)
Author(s):
LI Meng DU Yang LI Guoqing QI Sheng WANG Shimao WEI Shihao
(Department of Petroleum Supply Engineering, Logistical Engineering University, Chongqing 401311, China)
关键词:
油气爆炸爆炸超压火焰速度油气浓度开口管道
Keywords:
gasoline-air explosion explosion overpressure flame speed gasoline-air concentration open pipeline
分类号:
X932
DOI:
10.11731/j.issn.1673-193x.2017.10.029
文献标志码:
A
摘要:
为了研究油气浓度对半开口管道爆炸超压特性与火焰行为的影响,建立半开口透明管道实验台架,采用5种不同初始油气浓度,进行了一系列油气爆炸对比实验。研究结果表明:油气浓度对油气爆炸超压峰值以及升压速率有显著影响,二者都呈现随浓度的增加先增大后减小的变化规律;油气浓度对火焰锋面传播速度有着显著影响,在当量浓度比下,火焰锋面的传播速度最大,并且火焰锋面的传播距离也最远;管道内的火焰行为可以分为4个阶段;油气浓度对火焰传播形态以及传播速度有明显的影响,对火焰传播形态的影响主要体现在破坏变形以及管道外爆炸阶段,随着浓度增加,爆炸半径先增大后减小,火焰传播速度呈现相同的变化规律。
Abstract:
In order to investigate the effect of gasoline-air concentration on the explosion overpressure characteristics and flame behavior of semi-open pipeline, a semi-open transparent pipeline experimental platform was established, and a series of comparative experiments on the gasoline-air explosion were carried out by using five different initial gasoline-air concentrations. The results showed that the gasoline-air vapor concentration had a significant effect on the peak value of overpressure and the rate of pressure rise of the gasoline-air explosion, and both of them showed the change law of increasing first and then decreasing with the increase of the gasoline-air concentration. The gasoline-air vapor concentrations had a significant effect on the propagation speed of flame front, and the propagation speed of flame front was the greatest and the propagation distance of flame front was the longest under the equivalent concentration ratio. The flame behavior in the pipeline could be divided into four stages. The gasoline-air vapor concentrations had a significant effect on the flame propagation morphology and propagation speed. The effect on the flame propagation morphology was mainly reflected in the damage deformation and explosion outside the pipeline stages. The explosion radius increased first and then decreased with the increase of concentration, as well as the flame propagation speed.

参考文献/References:

[1]Tomlin G, Johnson D M, Cronin P, et al. The effect of vent size and congestion in large-scale vented natural gas/air explosions[J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 169-181.
[2]Fakandu B M, Andrews G E, Phylaktou H N. Vent burst pressure effects on vented gas explosion reduced pressure[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429-438.
[3]Bao Q, Fang Q, Zhang Y, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures[J]. Fuel, 2016, 175:40-48.
[4]Ambrosi G, Bosco L, Camosso M E. Experimental and numerical study of methane-air deflagrations in a vented enclosure[J]. Fire Safety Science, 2008, 9(2):1043-1054.
[5]Keenan J J, Makarov D V, Molkov V V. Rayleigh-Taylor instability: modelling and effect on coherent deflagrations[J]. International Journal of Hydrogen Energy, 2014, 39(35):20467-20473.
[6]QUILLATRE P, VERMOREL O, POINSOT T, et al. Large eddy simulation of vented deflagration[J].Industrial & Engineering Chemistry Research, 2013,52(33):11414-11423.
[7]Guo J, Sun X, Rui S, et al. Effect of ignition position on vented hydrogen-air explosions[J]. Explosion & Shock Waves, 2016, 40(45):15780-15788.
[8]Guo J, Wang C, Liu X. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio[J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9518-9523.
[9]杜扬, 李阳超, 齐圣,等. 受限空间内局部油气爆燃超压与火焰传播特性[J]. 后勤工程学院学报, 2016, 32(5):33-38. DU Yang, LI Yangchao, QI Sheng, et al. Characteristics of partial gasoline-air mixture deflagration’s overpressure and flame propagation in confined space[J]. Journal of Logistical Engineering University, 2016, 32(5):33-38.
[10]齐圣,杜扬,梁建军,等.受限空间油气爆燃火焰形态[J]. 爆炸与冲击, 2016,36(6): 832-838. QI Sheng, DU Yang, LIANG Jianjun, et al. Flame patterns of gasoline-air mixture deflagration in a confined space[J]. Explosion and Shock Waves, 2016, 36(6): 832-838.
[11]杜扬, 李国庆, 王世茂, 等. 障碍物数量对油气泄压爆炸特性的影响[J]. 化工学报, 2017, 68(7): 2946-2955. DU Yang, LI Guoqing, WANG Shimao, et al. Effects of obstacle number on characteristics of vented gasoline-air mixture explosions[J]. CIESC Journal, 2017, 68(7): 2946-2955.
[12]Wen X, Yu M, Liu Z, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4):730-738.
[13]Wen X, Yu M, Ji W, et al. Methane-air explosion characteristics with different obstacle configurations[J]. International Journal of Mining Science and Technology, 2015, 25(2):213-218.
[14]PARK D J,LEE Y S,GREEN A R.Experiments on the effects of multiple obstacles in vented explosion chambers[J]. Journal of Hazardous Materials,2008,153(1-2):340-350.
[15]Park D J, Lee Y S, Green A R. Prediction for vented explosions in chambers with multiple obstacles[J]. Journal of Hazardous Materials, 2008, 155(1-2):183-192.
[16]Di S V, Di B A, Russo G. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles[J]. Journal of Hazardous Materials, 2010, 180(1-3):71-78.
[17]王世茂, 杜扬, 李国庆, 等. 局部开口受限空间油气爆燃的超压瞬变与火焰行为[J]. 化工学报, 2017, 68(8): 3310-3318. WANG Shimao, DU Yang, LI Gguoqing, et al. Overpressure transients and flame behaviors of gasoline-air mixture deflagration in confined space with local opening[J]. CIESC Journal, 2017, 68(8): 3310-3318.
[18]杜扬,王世茂,齐圣,等. 油气在顶部含弱约束结构受限空间内的爆炸特性[J]. 爆炸与冲击, 2017, 37(1): 53-60. DU Yang, WANG Shimao, QI Sheng, et al. Explosion of gasoline/air mixture in confined space with weakly constrained structure at the top[J]. Explosion and Shock Waves, 2017, 37(1): 53-60.
[19]Pedersen H H, Tomlin G, Middha P, et al. Modelling large-scale vented gas explosions in a twin-compartment enclosure[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1604-1615.
[20]温小萍, 武建军, 解茂昭.瓦斯爆炸火焰结构与压力波的耦合规律[J]. 化工学报, 2013,64(10):3871-3877. WEN Xiaoping, WU Jianjun, XIE Maozhao. Coupled relationship between flame structure and pressure wave of gas explosion[J].CIESC Journal, 2013, 64(10):3871-3877.
[21]Hisken H, Enstad G A, Middha P, et al. Investigation of concentration effects on the flame acceleration in vented channels[J]. Journal of Loss Prevention in the Process Industries, 2015, 36(1):447-459.
[22]Fakandu B M, Mbam C J, Andrews G E, et al. Gas explosion venting: External explosion turbulent flame speeds that control the overpressure[J].Chemical Engineering Transactions, 2016(53):1-6.
[23]Chao J, Bauwens C R, Dorofeev S B. An analysis of peak overpressures in vented gaseous explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2):2367-2374.

相似文献/References:

[1]吴松林,杜 扬,李国庆,等.基于激波管的油气爆炸实验和数据分析[J].中国安全生产科学技术,2014,10(2):5.[doi:10.11731/j.issn.1673-193x.2014.02.001]
 WU Song lin,DU Yang,LI Guo qing,et al.Explosion experiment and data analysis of gasoline\|air mixture based on shock tube[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(10):5.[doi:10.11731/j.issn.1673-193x.2014.02.001]
[2]师吉浩,朱渊,陈国明,等.非典型约束形式下海洋平台波纹板舱室抗爆能力评估[J].中国安全生产科学技术,2016,12(4):39.[doi:10.11731/j.issn.1673-193x.2016.04.008]
 SHI Jihao,ZHU Yuan,CHEN Guoming,et al.Assessment on explosion resistance capability for corrugated wall of cabin with atypical constraints on offshore platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):39.[doi:10.11731/j.issn.1673-193x.2016.04.008]
[3]魏树旺,蒋新生,何标,等.七氟丙烷对狭长受限空间油气爆炸抑制实验研究[J].中国安全生产科学技术,2016,12(7):128.[doi:10.11731/j.issn.1673-193x.2016.07.023]
 WEI Shuwang,JIANG Xinsheng,HE Biao,et al.Experimental study on suppression of gasoline-air mixture explosion in narrow and long confined space by heptafluoropropane[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):128.[doi:10.11731/j.issn.1673-193x.2016.07.023]
[4]蒋新生,魏树旺,袁广强,等.狭长管道油气爆炸流场分布特征规律及分析[J].中国安全生产科学技术,2016,12(8):130.[doi:10.11731/j.issn.1673-193x.2016.08.022]
 JIANG Xinsheng,WEI Shuwang,YUAN Guangqiang,et al.Characteristic rules and analysis of flow field distribution for gasoline-air mixture explosion in narrow and long pipeline[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):130.[doi:10.11731/j.issn.1673-193x.2016.08.022]
[5]李国庆,杜扬,白洁,等.T型分支管道内油气爆炸火焰传播特性数值模拟研究[J].中国安全生产科学技术,2016,12(9):120.[doi:10.11731/j.issn.1673-193x.2016.09.022]
 LI Guoqing,DU Yang,BAI Jie,et al.Numerical simulation on flame propagation features of gasoline-vaper explosion in T-shaped branch pipe[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):120.[doi:10.11731/j.issn.1673-193x.2016.09.022]
[6]谢威,魏树旺,蒋新生,等.受限空间网状高分子材料抑制油气爆炸实验研究[J].中国安全生产科学技术,2017,13(6):162.[doi:10.11731/j.issn.1673-193x.2017.06.027]
 XIE Wei,WEI Shuwang,JIANG Xinsheng,et al.Experimental study on gasoline-air mixture explosion suppression using grid-like polymer material in confined space[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):162.[doi:10.11731/j.issn.1673-193x.2017.06.027]
[7]梁滔,孙永夺,杨锡军.泡沫镍对甲烷-空气预混气体爆燃超压影响的研究[J].中国安全生产科学技术,2017,13(8):170.[doi:10.11731/j.issn.1673-193x.2017.08.027]
 LIANG Tao,SUN Yongduo,YANG Xijun.Study on effect of nickel foam on deflagration overpressure of methane-air premixed gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):170.[doi:10.11731/j.issn.1673-193x.2017.08.027]
[8]高建丰,何笑冬,周韶彤.原油管道氮气抑爆实验研究[J].中国安全生产科学技术,2018,14(9):84.[doi:10.11731/j.issn.1673-193x.2018.09.013]
 GAO Jianfeng,HE Xiaodong,ZHOU Shaotong.Experimental study on explosion suppression of crude oil pipeline by N2[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):84.[doi:10.11731/j.issn.1673-193x.2018.09.013]
[9]杨凯,吕鹏飞,胡倩然,等.大尺度障碍物与泄爆面对天然气内爆炸的协同作用规律研究[J].中国安全生产科学技术,2018,14(12):21.[doi:10.11731/j.issn.1673-193x.2018.12.003]
 YANG Kai,LYU Pengfei,HU Qianran,et al.Research on synergetic effect of largescale obstacles and explosion vents on indoor explosion of natural gas[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(10):21.[doi:10.11731/j.issn.1673-193x.2018.12.003]
[10]庞磊,胡倩然,马菲菲,等.泄爆面特征参数对天然气爆炸超压峰值的影响规律[J].中国安全生产科学技术,2020,16(4):126.[doi:10.11731/j.issn.1673-193x.2020.04.020]
 PANG Lei,HU Qianran,MA Feifei,et al.Effect of vent characteristic parameters on overpressure peaks of natural gas explosion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2020,16(10):126.[doi:10.11731/j.issn.1673-193x.2020.04.020]

备注/Memo

备注/Memo:
国家自然科学基金项目(51276195)
更新日期/Last Update: 2017-11-03