|本期目录/Table of Contents|

[1]吴晗,刘少胡,刘旭辉,等.焊肉位置对连续管冲蚀磨损规律研究[J].中国安全生产科学技术,2017,13(2):138-142.[doi:10.11731/j.issn.1673-193x.2017.02.024]
 WU Han,LIU Shaohu,LIU Xuhui,et al.Study on erosion wear laws of coiled tubing affected by weldment position[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(2):138-142.[doi:10.11731/j.issn.1673-193x.2017.02.024]
点击复制

焊肉位置对连续管冲蚀磨损规律研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
13
期数:
2017年2期
页码:
138-142
栏目:
现代职业安全卫生管理与技术
出版日期:
2017-02-28

文章信息/Info

Title:
Study on erosion wear laws of coiled tubing affected by weldment position
文章编号:
1673-193X(2017)-02-0138-05
作者:
吴晗刘少胡刘旭辉周传喜金高魏世忠
长江大学 机械工程学院,湖北 荆州 434023
Author(s):
WU Han LIU Shaohu LIU Xuhui ZHOU ChuanxiJIN Gao WEI Shizhong
School of Mechanical Engineering, Yangtze University, Jingzhou Hubei 434023, China
关键词:
焊肉位置连续管冲蚀磨损压裂
Keywords:
weldment position coiled tubing erosion wear fracturing
分类号:
TE357.1
DOI:
10.11731/j.issn.1673-193x.2017.02.024
文献标志码:
A
摘要:
针对连续管在压裂作业时连续管内壁易受冲蚀磨损甚至导致失效的问题,基于液固两相流和冲蚀理论,利用FLUENT软件对比研究了带焊肉的直连续管、360°弯曲连续管、正弦弯曲连续管等连续管的内壁冲蚀磨损以及焊肉位置对360°弯曲连续管的冲蚀磨损规律。研究表明:360°弯曲连续管的最大冲蚀速率较直连续管增加了近22倍,正弦弯曲连续管的最大冲蚀速率较直连续管增加了近264倍;在360°弯曲连续管中,焊肉分布在外侧时连续管所受的最大冲蚀速率较无焊肉增加了约57%,焊肉在连续管内的扭转角度由90°增加到360°时,连续管最大冲蚀速率增加了约277%,建议控制焊肉位置以及焊肉扭转程度以减小冲蚀磨损。
Abstract:
Aiming at the problem that the inner wall of coiled tubing (CT) is easy to be eroded and even lead to failure during fracturing operation, based on the theories of liquid-solid two-phase flow and erosion, the erosion wear of inner wall in straight CT, 360° bending CT and sinusoidal bending CT with weldment were compared, and the erosion wear laws of 360° bending CT affected by weldment position were studied by FLUENT software. The results showed that the maximum erosion rate of 360° bending CT was about 22 times greater than that of straight CT, and the maximum erosion rate of sinusoidal bending CT was about 264 times greater than that of straight CT. In the 360° bending CT, the maximum erosion rate with weldment in outer wall was about 57% greater than that of CT without weldment. The maximum erosion rate of CT increased by about 277% when the torsion angle of weldment in the CT increased from 90° to 360°. It was recommended to control the position of weldment and the degree of torsion to reduce erosion wear.

参考文献/References:

[1]Subhash N. Shah, Samyak Jain. Coiled tubing erosion during hydraulic fracturing slurry flow[J]. Wear, 2008(264):279-290.
[2]S.N. Shah, S. Jain, Y. Zhou. Coiled Tubing Erosion During Hydraulic Fracturing Slurry Flow[R]. SPE 89479, 2004.
[3]M. Bailey, I.L. Blanco, R.S. Rosine. Comparison of Computational Fluid Dynamics of Erosion in Coiled Tubing on Reel-to-Injector Flow Area[R], SPE 121171, 2009.
[4]R.S. Rosine, I.L. Blanco, M. Bailey. Comparison of Computational Fluid Dynamics of Erosion in Coiled Tubing to Field and Test Data[R]. SPE 113619, 2008.
[5]I.L. Blanco, R.S. Rosine, M. Bailey. Comparison of Computational Fluid Dynamics of Slurry Flow in Coiled Tubing to Field Data[R]. SPE 107105, 2007.
[6]鄢标, 夏成宇, 陈敏, 等. 连续管压裂冲蚀磨损性能研究[J]. 石油机械, 2016, 44(4):71-74. YAN Biao, XIA Chengyu, CHEN Min, et al. Erosion wear characteristic of coiled tubing in fracturing operation[J]. China Petroleum Machinery, 2016, 44(4):71-74.
[7]刘少胡, 张益维, 涂忆柳. 连续管外壁冲蚀磨损规律[J]. 中国粉体技术, 2016,22(6):80-83. LIU Shaohu, ZHANG Yiwei, TU Yiliu. Erosion wear law of coiled tubing outer wall[J]. China Powder Science and Technology, 2016, 22(6):80-83.
[8]郑华林, 张益维, 刘少胡. 水力压裂冲蚀磨损对连续管剩余寿命影响研究[J]. 中国安全生产科学技术, 2016,12(7):5-10. ZHENG Hualin, ZHANG Yiwei, LIU Shaohu. Study on effect of erosion wear to residual life of coiled tubing for hydraulic fracturing[J]. Journal of Safety Science and Technology, 2016,12(7):5-10.
[9]王洪光. 实用焊接工艺手册[M]. 北京: 化学工业出版社, 2010:1-21.
[10]张忠厚, 李发跃. 椭圆形焊缝全自动埋弧焊装置的设计[J]. 焊接技术, 1990(4):32-34. ZHANG Zhonghou, LI Fayue. Design of automatic submerged arc welding device for elliptical weld seam[J]. Welding Technogy, 1990(4):32-34.
[11]J. Boles, R, Burgos, A. Medina. A Field Study of Coiled-Tubing Material Loss and Ovality[R]. SPE 113669, 2008.
[12]祝效华, 刘少胡, 童华. 气体钻井钻杆冲蚀规律研究[J]. 石油学报, 2010, 31(6):1013-1017. ZHU Xiaohua, LIU Shaohu, TONG Hua. A study on the drill pipe erosion law in gas drilling[J]. Acta Petrolei Sinica, 2010, 31(6):1013-1017.
[13]梁光川, 聂畅, 刘奇, 等. 输气管道中节流阀冲蚀数值模拟[J]. 油气田地面工程, 2013, 32(9):39-40. LIANG Guangchuan, NIE Chang, LIU Qi, et al. Numerical simulation of throttle erosion in gas pipeline[J]. Oil-Gasfield Surface Engineering, 2013, 32(9):39-40.
[14]王龙庭. 钻井连续管力学特性研究[D]. 青岛:中国石油大学(华东), 2008:67-73.
[15]陈耀华, 覃成锦. 连续管在水平井中的力学行为研究[J]. 西部探矿工程, 2010(7):50-53. CHEN Yaohua, TAN Chengjin. Research of the mechanical tube in horizontal wells[J]. West-china Exploration Engineering, 2010(7):50-53.
[16]杨高, 罗刚. 连续管缠绕力学研究[J]. 石油矿场机械, 2010, 39(5):10-13. YANG Gao, LUO Gang. Mechanics research of bending coiled tubing[J]. Oil Field Equipment, 2010, 39(5):10-13.
[17]S. N. Shah, Y. Zhou, Naval Goel. Flow Behavior of Fracturing Slurries in CT [R]. SPE 74811, 2002.

相似文献/References:

备注/Memo

备注/Memo:
国家自然科学基金项目(51604039);湖北省自然科学基金项目(2015CFC855);湖北省教育厅科学技术研究计划青年人才项目(Q20161310);长江青年科技创新团队基金项目(2016cqt02)
更新日期/Last Update: 2017-03-29