|本期目录/Table of Contents|

[1]李轶明,何敏侠,夏威,等.水平井油基钻井液气侵溶解气膨胀运移规律研究[J].中国安全生产科学技术,2016,12(10):44-49.[doi:10.11731/j.issn.1673-193x.2016.10.007]
 LI Yiming,HE Minxia,XIA Wei,et al.Study on swelling and migration laws of dissolved gas during gas kick of oil-based drilling fluid in horizontal well[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(10):44-49.[doi:10.11731/j.issn.1673-193x.2016.10.007]
点击复制

水平井油基钻井液气侵溶解气膨胀运移规律研究
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年10期
页码:
44-49
栏目:
学术论著
出版日期:
2016-10-30

文章信息/Info

Title:
Study on swelling and migration laws of dissolved gas during gas kick of oil-based drilling fluid in horizontal well
作者:
李轶明何敏侠夏威李相
(中国石油大学(北京) 石油工程学院,北京 102249)
Author(s):
LI Yiming HE Minxia XIA Wei LI Xiangfang
College of Petroleum Engineering, China University of Petroleum-Beijing, Beijing 102249, China
关键词:
水平井井控油基钻井液气侵气液两相流
Keywords:
horizontal well well control oil-based drilling fluid gas kick gas-liquid two-phase flow
分类号:
X937
DOI:
10.11731/j.issn.1673-193x.2016.10.007
文献标志码:
A
摘要:
天然气进入井筒并溶解于油基钻井液会对钻井安全产生潜在威胁,溶解气随钻井液运移到井口附近突然发生析出 并膨胀,使气侵早期监测及预警的难度显著增加。为了降低井喷发生概率和钻井作业风险,针对水平井油基钻井液溶解 气运移规律进行了研究。采用气液两相流模型,模拟了不同初始气侵速率情况下甲烷溶解气和游离气随钻井液在水平段 和垂直段的运移过程,得到环空中钻井液的流速变化、甲烷析出过程、井筒环空气液两相流流型变化、泥浆池增量随时 间变化和截面含气率沿程分布等规律。模拟结果表明,油基钻井液发生气侵时的初始进气率存在临界值;在小气侵速率 情况下,侵入环空的甲烷将以溶解气的形式运移到井口,在井口分离释放,对钻井安全构成的威胁较小;而当气侵量超 过临界值时,在环空上部发生气体分离,分离点迅速下移,如不及时控制,在极短时间内便可演化为井喷,危险性极大 。
Abstract:
The phenomena that natural gas enter the wellbore and dissolve in the oil-based drilling fluid will lead to potential threaten to the drilling safety, and the dissolved gas migrating to the wellhead with the drilling fluid may occur evolution and swelling suddenly, which make the early monitoring and warning of gas kick more difficult. In order to reduce the probability of blowout and the risk of drilling operation, the migration laws of dissolved gas for oil-based drilling fluid in horizontal well were studied. The migration processes of methane dissolved gas and free gas with drilling fluid in the horizontal section and vertical section under different initial gas kick rate were simu-lated by using the gas-liquid two-phase flow model, and the following laws were obtained, such as the change of flow velocity for drilling fluid in annulus, the methane evolution process, the change of flow regime for gas-liquid two-phase flow in wellbore annulus, the change of pit gain against time, and the distribution of sectional void frac-tion along the wellbore, etc. The results showed that the initial gas inflow rate exists a critical value when the oil-based drilling fluid occur gas kick. When the gas kick rate is small, the methane cutting into annulus will migrate to the wellhead as the form of dissolved gas, and separate and release at the wellhead, which causes a smaller threaten to the drilling safety. When the gas inflow rate exceeds the critical value, the gas separation will appear at the upper part of annulus, then the separation point moves down quickly. If not controlled in time, it will evolve into blowout in a very short period of time, with a great danger.

参考文献/References:

[1]O’Brien T B. Handling gas in an oil mud takes special precautions [J]. World Oil, 1981: 83-86.
[2]O’Bryan P L. The experimental and theorical study of methane solubility in an oil-base drilling fluid [D]. Baton Rouge: Louisiana State University, 1983.
[3]Leblanc J L, Leuis R L. A mathematical model of a gas kick [J]. Journal of Petroleum Technology, 1968, 20(4): 888-898.
[4]Mathews J L. Upward migration of gas kicks in a shut-in well [D]. Baton Rouge: Louisiana State U, 1980.
[5]McKenzie M F. Factors affecting surface casing pressure during well control operations [D]. Baton Rouge: Louisiana State U, 1972.
[6]Hoberock L L, Stanbery S R. Pressure dynamics in wells during gas kicks-part 2: component models and results [J]. Journal of Petroleum Technology, 1979, 33(8): 1367-1378.
[7]Nickens H V. A Dynamic computer model of kick well [J]. SPE Drilling Engineering, 1987, 2(2): 158-173.
[8]Rommetveit R, Bimkevoll K S, Bach G F et al. full scale kick experiments horizontal wells [C]. SPE Annual Technical Conference and Exhibition, Dallas, SPE30525, 1995.
[9]Petersen J, Rommetveit R, Tarr B A. Kick with lost circulation simulator, a tool for design of complex well control situations [C]. SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Auetralia, SPE49956, 1998.
[10]Rommetveit R, Fjelde K K, Aas B. HPHT well control; an integrated approach [C]. Offshore Technology Conference, Houston, OTC15322, 2003.
[11]李相方. 井涌期间气液两相流动规律研究[D]. 北京:中国石油大学(北京), 1993.
[12]孙晓峰,李相方,任美鹏,等. 溢流期间气体沿井眼膨胀规律研究[J]. 工程热物理学报, 2009, 30(12): 2039- 2042. SUN Xiaofeng, LI Xiangfang, REN Meipeng, et al. The research of gas expand along the borehole during the kick [J]. Journal of Engineering Thermophysics, 2009, 30(12): 2039-2042.
[13]任美鹏,李相方,王岩,等. 基于立压套压的气侵速度及气侵高度判断方法[J]. 石油钻采工艺, 2012, 34(4): 16-19. REN Meipeng,LI Xiangfang,WANG Yan, et al. The determination method of velocity and height of gas invision based on standpipe and casing pressure [J]. Oil Drilling & ProductionTechnology, 2012, 34(4): 16-19.
[14]任美鹏,李相方,尹邦堂,等. 基于模糊数学钻井井喷概率计算模型研究[J]. 中国安全生产科学技术, 2012, 8(1): 81-86. REN Meipeng, LI Xiangfang, YIN Bangtang, et al. Study on calculating model of drilling blowout probability based on fuzzy mathematics [J]. Journal of Safety Science and Technology, 2012, 8(1): 81- 86.
[15]张兴全,李相方,李玉军,等. 钻井井喷爆炸事故分析及对策[J]. 中国安全生产科学技术, 2012, 8(6): 129- 133. ZHANG Xingquan, LI Xiangfang, LI Yujun, et al. Study on explosion-proof technology of drilling blowout [J]. Journal of Safety Science and Technology, 2012, 8(6): 129-133.
[16]尹邦堂,李相方,任美鹏,等. 深水井喷顶部压井成功最小泵排量计算方法[J]. 中国安全生产科学技术, 2011, 7(11): 14-19. YIN Bangtang, LI Xiangfang, REN Meipeng,et al. Calculation method for the minimum pump displacement while top-kill method is successful in deep water well control [J]. Journal of Safety Science and Technology, 2011, 7(11): 14-19.

相似文献/References:

[1]隋秀香,尹邦堂,张兴全,等.含硫油气井井控技术及管理方法[J].中国安全生产科学技术,2011,7(10):80.
 SUI Xiu-xiang,YIN Bang-tang,ZHANG Xing-quan,et al.Well Control Technology and Management Method for Sulfur Oil and Gas Wells[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2011,7(10):80.
[2]杜 钢,于洋飞,熊朝东,等.钻井井喷失控因素分析及预防对策[J].中国安全生产科学技术,2014,10(2):120.[doi:10.11731/j.issn.1673-193x.2014.02.020]
 DU Gang,YU Yang fei,XIONG Chao dong,et al.Analysis on factors and preventive action for drilling uncontrollable blowout[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(10):120.[doi:10.11731/j.issn.1673-193x.2014.02.020]
[3]黎伟,宋伟,李乃禾,等.滑套式井下安全阀设计及动态特性分析[J].中国安全生产科学技术,2017,13(2):159.[doi:10.11731/j.issn.1673-193x.2017.02.028]
 LI Wei,SONG Wei,LI Naihe,et al.Design and dynamic characteristic analysis of sliding-sleeve subsurface safety valve[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):159.[doi:10.11731/j.issn.1673-193x.2017.02.028]
[4]刘少胡,李思行,冯定,等.连续管钻塞水平段铁屑运移机理研究[J].中国安全生产科学技术,2017,13(6):58.[doi:10.11731/j.issn.1673-193x.2017.06.009]
 LIU Shaohu,LI Sixing,FENG Ding,et al.Study on migration mechanism of iron filings in horizontal section during drilling plug with coiled tubing[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(10):58.[doi:10.11731/j.issn.1673-193x.2017.06.009]
[5]李轶明,夏威,罗方伟,等.司钻法自动化压井系统试验研究[J].中国安全生产科学技术,2019,15(3):30.[doi:10.11731/j.issn.1673-193x.2019.03.005]
 LI Yiming,XIA Wei,LUO Fangwei,et al.Experimental study on automatic well killing system of driller’s method[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(10):30.[doi:10.11731/j.issn.1673-193x.2019.03.005]
[6]陈文康,冯定,杜宇成,等.水平井钻磨管柱油管组合方式研究及下入安全性分析[J].中国安全生产科学技术,2019,15(11):43.[doi:10.11731/j.issn.1673-193x.2019.11.007]
 CHEN Wenkang,FENG Ding,DU Yucheng,et al.Study on tubing joined pattern of drillgrinding string in horizontal well and safety analysis of tripping[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(10):43.[doi:10.11731/j.issn.1673-193x.2019.11.007]

备注/Memo

备注/Memo:
中国石油集团科技管理部科研项目(2014D-4601);中国石油大学(北京)科研基金(2462015YQ0216; 2462015YQ0403)
更新日期/Last Update: 2016-11-30